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ABSTRACT
Objective Hirschsprung disease (HSCR) is one of 
the common neurocristopathies in children, which is 
associated with at least 20 genes and involves a complex 
regulatory mechanism. Transcriptional regulatory network 
(TRN) has been commonly reported in regulating gene 
expression and enteric nervous system development but 
remains to be investigated in HSCR. This study aimed to 
identify the potential TRN implicated in the pathogenesis 
and diagnosis of HSCR.
Methods Based on three microarray datasets from the 
Gene Expression Omnibus database, the multiMiR package 
was used to investigate the microRNA (miRNA)–target 
interactions, followed by Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses. Then, we collected transcription factors (TFs) 
from the TransmiR database to construct the TF–miRNA–
mRNA regulatory network and used cytoHubba to 
identify the key modules. Finally, the receiver operating 
characteristic (ROC) curve was determined and the 
integrated diagnostic models were established based on 
machine learning by the support vector machine method.
Results We identified 58 hub differentially expressed 
microRNAs (DEMis) and 16 differentially expressed mRNAs 
(DEMs). The robust target genes of DEMis and DEMs 
mainly enriched in several GO/KEGG terms, including 
neurogenesis, cell–substrate adhesion, PI3K–Akt, 
Ras/mitogen- activated protein kinase and Rho/ROCK 
signaling. Moreover, 2 TFs (TP53 and TWIST1), 4 miRNAs 
(has- miR- 107, has- miR- 10b- 5p, has- miR-659-3p, and 
has- miR- 371a- 5p), and 4 mRNAs (PIM3, CHUK, F2RL1, 
and CA1) were identified to construct the TF–miRNA–
mRNA regulatory network. ROC analysis revealed a strong 
diagnostic value of the key TRN regulons (all area under 
the curve values were more than 0.8).
Conclusion This study suggests a potential role of the 
TF–miRNA–mRNA network that can help enrich the 
connotation of HSCR pathogenesis and diagnosis and 
provide new horizons for treatment.

INTRODUCTION
Hirschsprung disease (HSCR) is one of the 
common neurocristopathies in children, which 
is characterized by aganglionosis.1 2 HSCR is 
primarily treated by surgery to eliminate the 

aganglionic bowel while commonly giving rise 
to medical complications, especially fatal enter-
ocolitis (about 35% after surgery),2–4 stool 
leakage, anastomotic stricture, anastomotic leak 
with abscess, and chronic constipation. There-
fore, detailed pathogenesis and effective alter-
natives should be developed.

At present, it is well known that the pathogen-
esis of HSCR is the dysfunction of enteric neural 
crest- derived precursors migrating through the 
bowel in a rostral- to- caudal direction from week 
3 to week 8 of human gestation.2 Emerging 
studies have reported the effects of enteric 
neural crest- derived cell (ENCC) transplanta-
tion for treating the HSCR model.5–7 However, 
because of the limited proliferation, migration 
and large- scale apoptosis during transplan-
tation, ENCC transplantation often tends to 
be an insufficient cure for HSCR.1 Although 
researchers have tried the ENCCs treated with 
cytokines, drugs, and signaling pathway regu-
lators to optimize cell transplantation, it failed 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Hirschsprung disease (HSCR) is one of the common 
neurocristopathies in children that involves a com-
plex pathogenesis. It is difficult to develop early di-
agnosis of HSCR, and surgery commonly gives rise 
to medical complications, especially fatal enteroco-
litis (about 35% after surgery).

WHAT THIS STUDY ADDS
 ⇒ A potential transcription factor–microRNA–mRNA 
regulatory network was identified as for the key reg-
ulons of which the receiver operating characteristic 
analysis revealed a strong diagnostic value in HSCR.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ This study suggests a transcriptional regulatory net-
work implicated in the pathogenesis and diagnosis 
of HSCR, which also provides new horizons and tar-
gets for treatment.
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to completely repair the enteric nervous system (ENS).8 9 
As supposed, HSCR is associated with at least 20 genes of 
more than seven chromosomal loci, involving a complex 
regulatory to ENCCs, but not single genetic factors.2 10 11 
Therefore, it is necessary to explore more details of the gene 
expression regulatory in HSCR.

Previous studies have shown that microRNAs (miRNAs) 
bind on the 5′ untranslated regions of mRNAs through 
partial complementarity and reduce gene expression by 
restraining mRNA translation and/or facilitating mRNA 
degradation.12 Many miRNAs have been reported to be 
related to HSCR,13–15 such as miRNA- 206,16 miR- 146b- 5p,17 
and miR- 181a.18 Like the functional genes, miRNA expres-
sion is regulated by transcription factors (TFs). Tran-
scriptional regulatory network (TRN), demonstrating 
the relationship of TF–miRNA–mRNA, commonly plays 
roles in the regulation of gene expression and cell 
biological function,19–21 and has been reported in ENS 
development,22 neural stem cell phenotype,20 and cancer 
pathogenesis.23 However, the role of TRN in HSCR 
remains to be investigated.

In this study, we performed integrated analysis of 
three microarray datasets from the Gene Expression 
Omnibus (GEO) database, based on which a potential 
TF–miRNA–mRNA network was constructed. Receiver 
operating characteristic (ROC) analysis based on the 
support vector machine (SVM) method revealed a strong 
diagnostic value of the key TRN regulons, which can help 
enrich the connotation of HSCR pathogenesis and diag-
nosis and provide new horizons for treatment.

MATERIALS AND METHODS
Microarray datasets and processing
The mRNA and miRNA expression profiles of patients 
with HSCR were obtained from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/), which was 
searched using the following terms: “Hirschsprung 
disease” AND “microarray” AND “Homo sapiens”. The 
following eligibility criteria were used to include or 
exclude datasets and samples: (1) the dataset contained 
at least three patients with HSCR and three controls; (2) 
the colons from HSCR and normal subjects were used for 
microarray analysis; and (3) raw data were available in the 
GEO database. Detailed information of the microarray 
datasets is listed in table 1.

The probe sets were also downloaded from the GEO 
database, and probes matching with multiple gene 
symbols were eliminated, while the mean values were 

calculated for gene symbols corresponding to multiple 
probes. The differentially expressed microRNAs (DEMis) 
and the differentially expressed mRNAs (DEMs) between 
HSCR and control samples in each dataset were identi-
fied by the Linear Models for Microarray Data (limma) 
package V.3.46.024 with the cut- off criteria of |log2 fold 
change|>0.5 and p value of <0.05. The Venn diagram 
was used to obtain the common DEMs between the two 
mRNA microarray datasets.

Hub DEMi identification
The miRNA similarity database (MISIM V.2.0, http://
www.lirmed.com/misim/)25 was searched to recog-
nize hub DEMis according to the MISIM V.2.0 Tutorial 
(http://www.lirmed.com/misim/Help).

Table 1 Characteristics of three microarray datasets included in the study

GSE accession Participants Data type Samples Platform Year

GSE77296 6 patients with HSCR and 3 healthy controls miRNA microarray Colon tissue GPL18058 2016

GSE96854 3 patients with HSCR and 3 healthy controls mRNA microarray Colon tissue GPL18943 2017

GSE98502 8 patients with HSCR and 8 healthy controls mRNA microarray Colon tissue GPL22361 2018

GSE, Series in Gene Expression Omnibus database; HSCR, Hirschsprung disease; miRNA, microRNA.

Figure 1 The whole study workflow. DEM, differentially 
expressed mRNA; DEMi, differentially expressed microRNA; 
GEO, Gene Expression Omnibus; GRNdb, Gene Regulatory 
Network Database; miRNA, microRNA; MISIM V.2.0, miRNA 
Similarity Database V.2.0; PPI, protein–protein interaction; 
ROC, receiver operating characteristic; RRA, Robust Rank 
Aggregation; SVM, support vector machine; TransmiR V.2.0, 
Transcription Factor Micro- RNA Regulations Database 
V.2.0; UCSC, University of California Santa Cruz; TRN, 
transcriptional regulatory network.
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miRNA–target interaction investigation
The multiMiR package V.1.20.026 was used to inves-
tigate the miRNA–target interactions. This package 
is a collection of miRNAs/targets from 14 external 
resources, including three validated miRNA–target data-
bases (miRecords, miRTarBase, and TarBase) and eight 
predicted micRNA–target databases (DIANA- microT, 
ElMMo, MicroCosm, miRanda, miRDB, PicTar, PITA, 
and TargetScan), and so on, which can be used to retrieve 
all the validated and predicted target genes of a given 
miRNA, and all the validated and predicted miRNA–
target interactions between a set of given miRNAs and 
mRNAs. Meanwhile, the top ten ranked miRNA–target 
couples were identified by Maximal Clique Centrality 
(MCC) algorithm via Cytoscape software V.3.8.2.

Protein–protein interaction (PPI) network analysis
All the target genes of hub DEMis identified previously 
were uploaded to the STRING database V.11.5 (https://
www.string-db.org/)27 to construct the PPI network. 
Confidence of >0.4 was set as the screening criteria. The 

PPI network was subsequently reconstructed and visu-
alized by Cytoscape software V.3.8.2. The robust target 
genes were subsequently screened out using the cyto-
Hubba plugin,28 which investigates the most important 
nodes in the PPI network with several topological analysis 
algorithms.

Robust Rank Aggregation (RRA) analysis
To minimize the bias and inconsistencies, we integrated 
the top 20 ranked genes in the PPI network calculated 
by eight different topological analysis algorithms (MCC, 
MNC, EPC, EcCentricity, DMNC, Degree, Closeness, and 
BottleNeck method), and the RRA package V.1.129 was 
adopted to identify the robust target genes. The score in 
the RRA analysis result indicated the ranking degree of 
each gene in the gene list, and the genes with a score of 
<0.05 were considered as the robust target genes.

Functional and pathway enrichment analyses
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses were used to 

Figure 2 Identification of hub DEMis in HSCR. (A) Volcano plot of miRNA microarray dataset GSE77296. The 21 upregulated 
miRNAs are marked in red; the 83 downregulated miRNAs are marked in blue; and the gray dots represent miRNAs with no 
significant difference. Network of miRNAs interaction were searched in the MISIM V.2.0 to recognize upregulated (B) and 
downregulated (C) hub DEMis. (D) Heatmap diagram of the hub DEMis. DEMi, differentially expressed microRNA; HSCR, 
Hirschsprung disease; miRNA, microRNA; MISIM V.2.0, miRNA Similarity Database V.2.0.
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investigate the biological process, cellular component, 
molecular function, and involved pathways of selected 
genes, which were performed with the clusterProfiler R 
package V.4.6.0.30 The GO/KEGG terms with an adjusted 
p value of <0.05 were considered statistically significant 
and were visualized via the ggplot2 R package V.3.3.3.

TF–miRNA–mRNA regulatory network analysis
The TF–miRNA regulations database (TransmiR V.2.0, 
http://www.targetscan.org/vert_72/)31 was searched 
to collect TFs of given miRNAs. Only the validated TF–
miRNA interactions were included to construct the TF–
miRNA–mRNA regulatory network, in which the key 
TRN regulon module was identified by the CytoHubba 
plugin.28 Moreover, the potential TF–miRNA interac-
tions were further analyzed in the University of California 
Santa Cruz (UCSC) genome browser (https://genome. 
ucsc.edu/), and the TF–mRNA correlation in the colon 
was further analyzed in the Gene Regulatory Network 
Database (GRNdb, http://www.grndb.com/).32

Diagnostic analysis of the key TRN regulons in HSCR
The ROC curve was obtained by GraphPad Prism software 
V.8.0.1 to assess the accuracy of each key TRN regulon as 
biomarkers in predicting HSCR. The machine learning 
based on the SVM method was used to establish an inte-
grated diagnostic model followed by the ROC curve.

Statistical analysis
Statistical analysis was performed by GraphPad Prism soft-
ware V.8.0.1. Normally distributed data were presented as 
means±standard deviation (SD), and two- tailed Student’s 
t- test was applied to compare differences between groups. 
Statistical significance was set at a p value of <0.05.

RESULTS
Microarray datasets and the workflow of this study
The microarray datasets derived from patients with HSCR 
were obtained from the GEO database. Only the data-
bases with the normal subjects for control were included 
for further analysis, including two mRNA microarray 
datasets (GSE96854 and GSE98502) and one miRNA 
microarray dataset (GSE77296). The workflow of the 
study is shown in figure 1. Detailed information of the 
three datasets is shown in table 1.

Identification of hub DEMis in HSCR
The miRNA microarray dataset (GSE77296) was analyzed 
by the limma package to identify DEMis of the colon 
between patients with HSCR and healthy controls. 
When setting the cut- off criteria as follows: p value of 
<0.05 and |log2 fold change|>0.5, we obtained 104 DEMis 
(including 21 upregulated and 83 downregulated DEMis) 
(figure 2A). Then, we searched the miRNA similarity data-
base (MISIM V.2.0, http://www.lirmed.com/misim/) 

Figure 3 Investigation of the genes targeted by hub DEMis. The multiMiR package was used to investigate the miRNA–
target interactions. Upset diagram of target genes of upregulated hub DEMis in validated (A) and predicted (B) miRNA–target 
databases. Upset diagram of target genes of downregulated hub DEMis in validated (C) and predicted (D) miRNA–target 
databases. The genes marked with red boxes were shared targets in three validated databases or at least six predicted 
databases. DEMi, differentially expressed microRNA; miRNA, microRNA.
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to recognize hub DEMis, generating 12 upregulated 
(figure 2B) and 46 downregulated (figure 2C) miRNAs, 
all of which were illustrated as heatmap (figure 2D) and 
detailed in online supplemental table 1.

Investigation and functional annotation of the genes targeted 
by hub DEMis
The multiMiR package was used to investigate the genes 
targeted by hub DEMis. The target genes shared in 
three validated databases or at least six predicted data-
bases were chosen in subsequent analysis, including 31 
validated and 75 predicted target genes of upregulated 
miRNAs, while 25 validated and 102 predicted target 
genes of downregulated miRNAs (marked with a red box 
in figure 3).

After removing duplicates, 197 target genes were 
uploaded to the STRING database (http://string.embl. 
de/) to perform PPI analysis. Then, to hide the discon-
nected nodes, the Cytoscape software was adopted to 
visualize the network (figure 4A). Robust target genes 
were subsequently screened out using the cytoHubba 
plugin, which investigates the most important nodes in 
the PPI network with several topological analysis algo-
rithms. To improve the positive rate, the RRA method 
was used to integrate the top 20 ranked genes calculated 
by eight different topological analysis algorithms (MCC, 
MNC, EPC, EcCentricity, DMNC, Degree, Closeness, 
and BottleNeck), and a total of 14 genes were obtained 
accordingly (figure 4B). The upset diagram of the top 

20 ranked genes from the eight algorithms is shown in 
online supplemental figure 1. Finally, GO/KEGG func-
tional analysis was performed to explore the biological 
classifications of robust target genes in HSCR by the clus-
terProfiler package (figure 4C). GO enrichment anal-
yses showed that the significantly enriched terms were 
related to the following: neurogenesis; cell cycle, apop-
tosis, differentiation, aging, and cell–substrate adhesion; 
protein phosphorylation; protein kinase activity; cellular 
response to transforming growth factor beta stimulus and 
vascular endothelial growth factor stimulus; DNA- binding 
TF activity, etc. In the KEGG pathway analysis, the signifi-
cantly enriched terms were PI3K–Akt, mitogen- activated 
protein kinase (MAPK) (ERK1/2), notch, relaxin, and 
HIF- 1 signaling pathway. RAS/MAPK and PI3K–Akt had 
been reported as the key signaling pathways in neurogen-
esis and neuroprotection20 33–36 and were related to RET 
and RET- regulating pathways in HSCR.14

Taken together, these data indicated that the hub 
DEMis and their target genes identified previously 
contributed to the pathogenesis of HSCR.

Investigation and functional annotation of DEMs in HSCR
We further analyzed the other two mRNA datasets 
(GSE96854 and GSE98502) to identify the DEMs in 
the colon between patients with HSCR and healthy 
controls. When setting the cut- off criteria as follows: p 
value of <0.05 and |log2 fold change|>0.5, we obtained 
3998 DEMs (including 2253 upregulated and 1745 

Figure 4 Functional annotation of the genes targeted by hub DEMis. (A) Whole PPI network with all target genes of hub 
DEMis; the bigger dots and deeper represent the higher degree. (B) The lollipop chart shows all robust target genes identified 
by the RRA method; the bigger dots represent the higher rank. (C) GO/KEGG functional enrichment analysis. BP, biological 
process; CC, cellular component; DEMi, differentially expressed microRNA; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; MF, molecular function; PPI, protein–protein interaction; RRA, Robust Rank Aggregation.
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downregulated DEMs) in GSE96854 and 219 DEMs 
(including 147 upregulated and 72 downregulated 
DEMs) in GSE98502 (figure 5A). The common DEMs in 
the two datasets (including 11 upregulated and 5 down-
regulated genes) (figure 5B) are detailed in table 2, 
which were significantly enriched in the GO/KEGG 
terms of Rho protein signal transduction, Ras protein 
signal transduction, IKappaB kinase (IKK)/nuclear 
factor kappa B (NF-κB), and cytokine- mediated signa-
ling pathway (interferon- gamma, interleukin- 5, inter-
leukin- 10, etc) (figure 5C). Various studies have shown 
that Rho/ROCK,37–39 RAS/MAPK,20 33 40 and IKK/
NF-κB20 41 signaling played crucial roles in neurogen-
esis, which suggests the significant roles of the common 
DEMs in HSCR pathogenesis.

Analysis of TF–miRNA–mRNA regulatory network
For a robust miRNA–target interaction, we investigated 
the hub DEMis and the DEMs shared in two databases 
by the multiMiR package. A total of 34 miRNA–target 
couples were identified, including 7 upregulated miRNA- 
downregulated mRNAs (2 validated and 5 predicted 
miRNA–target couples) and 27 downregulated miRNA- 
upregulated mRNA interactions (8 validated and 19 
predicted miRNA–target couples) (figure 6A), all of 
which are detailed in online supplemental table 2. The 
top 10 ranked miRNA–target couples were identified by 
the MCC algorithm (figure 6B).

Then, we searched the TF–miRNA regulations data-
base (TransmiR V.2.0, http://www.cuilab.cn/transmir) 
for the TFs that target the miRNAs in figure 6B. Only 

Figure 5 Investigation and functional annotation of the DEMs in HSCR. (A) Volcano plot of mRNA microarray datasets 
GSE96854 and GSE98502; the upregulated mRNAs are marked in red; the downregulated mRNAs are marked in blue; and the 
gray dots represent mRNAs with no significant difference. (B) Venn diagram demonstrates the common 11 upregulated and 5 
downregulated DEMs. (C) GO/KEGG functional enrichment analysis. DEM, differentially expressed mRNA; GO, Gene Ontology; 
HSCR, Hirschsprung disease; KEGG, the Kyoto Encyclopedia of Genes and Genomes.
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the validated TF–miRNA interactions were included to 
construct the TF–miRNA–mRNA regulatory network 
(figure 7A). The cytoHubba was used to identify the key 
modules (figure 7B), which included 2 TFs (TP53 and 
TWIST1), 4 miRNAs (has- miR- 107, has- miR- 10b- 5p, has- 
miR-659-3p, and has- miR- 371a- 5p), and 4 mRNAs (PIM3, 

conserved helix–loop–helix ubiquitous kinase (CHUK), 
F2RL1, and CA1). Finally, the potential TF–miRNA inter-
actions were further analyzed in the UCSC genome 
browser (https://genome.ucsc.edu/) (figure 7C), that 
is, the promoter region analysis of miRNA genes, showing 
that a higher level of H3K4me3 methylated modification 

Table 2 Characteristics of the 16 common differentially expressed mRNAs

Symbol Description Ensembl Regulation Primary function

CA1 Carbonic anhydrase 1 ENSG00000133742 Up Catalyzing the reversible hydration 
of carbon dioxide

ST3GAL4 ST3 beta- galactoside alpha- 2,3- 
sialyltransferase 4

ENSG00000110080 Up Participating in protein 
glycosylation

PAQR5 Progestin and adipoQ receptor 
family member 5

ENSG00000137819 Up Plasma membrane progesterone 
(P4) receptor coupled to G proteins

IL1RL1 Interleukin 1 receptor like 1 ENSG00000115602 Up The interleukin 1 receptor family 
involved in the function of helper 
T cells

F2RL1 F2R like trypsin receptor 1 ENSG00000164251 Up The G- protein coupled receptor 
1 family followed by PLC, MAPK, 
IKK/NF-κB, and Rho signaling

KCNN2 Potassium calcium- activated 
channel subfamily N member 2

ENSG00000080709 Up Regulating neuronal excitability 
by contributing to the slow 
component of synaptic AHP

SLC36A4 Solute carrier family 36 member 4 ENSG00000180773 Up A sodium- independent 
electroneutral transporter for amino 
acids

PIM3 Pim- 3 proto- oncogene, serine/
threonine kinasep

ENSG00000198335 Up A proto- oncogene with serine/
threonine kinase activity, regulating 
cell apoptosis

SORBS2 Sorbin and SH3 domain containing 
2

ENSG00000154556 Up The member of the Abelson family 
of non- receptor protein–tyrosine 
kinases

CRB1 Crumbs cell polarity complex 
component 1

ENSG00000134376 Up Participating in photoreceptor 
morphogenesis in the retina

CHUK Component of inhibitor of nuclear 
factor kappa B kinase complex

ENSG00000213341 Up A component of a cytokine- 
activated protein complex as an 
inhibitor of NF-κB

ABCG5 ATP- binding cassette subfamily G 
member 5

ENSG00000138075 Down Mediating Mg (2+)- dependent and 
ATP- dependent sterol transport 
across the cell membrane

C1orf115 Chromosome one open reading 
frame 115

ENSG00000162817 Down Being associated with spastic 
paraplegia and autosomal 
recessive

EGFL6 EGF like domain multiple 6 ENSG00000198759 Down A member of EGF repeat 
superfamily involved in the 
cell cycle, proliferation, and 
developmental processes

RND2 Rho family GTPase 2 ENSG00000108830 Down A member of the Rho GTPase 
family, regulating neuronal 
morphology and endosomal 
trafficking

PGPEP1 Pyroglutamyl- peptidase I ENSG00000130517 Down A member of the peptidase C15 
family

AHP, afterhyperpolarization; CHUK, conserved helix–loop–helix ubiquitous kinase; EGF, epidermal growth factor; IKK, IκB kinase; MAPK, 
mitogen- activated protein kinase; NF-κB, nuclear factor kappa B; PLC, phospholipase C; SH3, src homology.
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represents the more reliable TF–target relationship. The 
correlation analysis of TFs and miRNA- targeted mRNAs 
in the colon was further analyzed in the GRNdb (http://
www.grndb.com/) (figure 7D).

Diagnostic value of the key TRN regulons as biomarkers in 
HSCR
The gold standard for the diagnosis of HSCR is rectal 
mucosal aspiration biopsy and pathological diagnosis, 
which are commonly invasive and difficult to perform.1 2 
The relative expression of the key TRN regulons (has- 
miR- 107, has- miR- 10b- 5p, has- miR-659-3p, has- miR- 371a- 5p, 
PIM3, CHUK, F2RL1, and CA1) were visualized as 
boxplots (figure 8A,B). To investigate the diagnostic 
value of these regulons in HSCR, the ROC curve was 
used, which showed that all eight regulons had area 
under the curve (AUC) values more than 0.8, indicating 
a strong diagnostic value (figure 8C). For better diagnosis 
prediction, these eight regulons were integrated to estab-
lish a multimarker diagnosis model based on machine 
learning by the SVM method. The ROC curve showed 
that the multimarker models could effectively predict 
HSCR (AUC=1.00) (figure 8C).

DISCUSSION
The transplantation of ENCCs to induce enteric neuro-
genesis is a potential radical strategy for HSCR while 
generating insufficient efficacy. It may due to the 
complex genes regulatory to ENCCs in children with 
HSCR.1 5 9 Although many genes have been identified to 

be associated with HSCR,2 11 such as RET, EDNRB, RARB, 
GATA2, and SOX10, which commonly regulate ENCCs 
during the development of ENS, how the TRN contrib-
utes to HSCR pathogenesis remains to be investigated. 
This study identified a potential TF–miRNA–mRNA 
network, including the key regulons of two TFs (TP53 
and TWIST1), four miRNAs (has- miR- 107, has- miR- 10b- 5p, 
has- miR-659-3p, and has- miR- 371a- 5p), and four mRNAs 
(PIM3, CHUK, F2RL1, and CA1), that can help enrich the 
connotation of HSCR pathogenesis and diagnosis and 
provide new horizons for treatment.

Many miRNAs have been reported to be related to 
HSCR,13–15 including miRNA- 206/SDPR,16 42 miR- 146b- 5p/
RET,17 and miR- 181a/RAP1B.18 In this study, we found that 
has- miR- 107, has- miR- 10b- 5p, has- miR-659-3- p, and has- miR- 
371a- 5p were related to HSCR and exerted good diagnostic 
value. As reported, has- miR- 107 regulated Wnt/β-catenin 
signaling43 and attenuated neurotoxicity induced by 
6- hydroxydopamine.44 MiR- 10b- 5p contributed to neurode-
generative disease, diabetes with dysfunction of interstitial 
Cajal cells, and neuroprotection for hippocampal neuronal 
cells.45–48 In cancer diseases, miR-659–3p and miR- 371a- 5p 
could regulate tumor progression and were associated with 
chemotherapy resistance.49–53 Novel research has shown 
that specific miRNAs in serum or plasma exosomal were 
identified to have good diagnostic value in HSCR.54 55 As 
mentioned previously, the miRNAs identified in this study 
had AUC values of more than 0.8 and remained unclear so 
far in HSCR, which provided new cues for future biomarker 
study of HSCR treatment and diagnosis.

Figure 6 Investigation of miRNA–target interactions. (A) miRNA–target interactions. The miRNAs are marked as diamonds, 
and mRNAs are marked as ellipses; upregulated genes are marked in red, while the downregulated genes are marked in green; 
bigger nodes indicate the higher degree; red and green lines represent the validated and predicted miRNA–target couples, 
respectively. (B) Top 10 ranked miRNA–target couples identified by MCC algorithm. The miRNAs and mRNAs are marked as 
diamonds and ellipses, respectively; sizes and colors of nodes represent the degree in the network. miRNA, microRNA; MCC, 
Maximal Clique Centrality.
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As reported, approximately 50% of familial and 20% of 
patients with sporadic HSCR had RET expression abnor-
malities; 5% of patients had EDNRB variations, while 4% 
of patients had SOX10 variations. It seems to be difficult 
to diagnose HSCR by any one of the known pathogenic 
genes due to the complex non- Mendelian inheritance. In 
this study, we constructed a potential TF–miRNA–mRNA 
network, of which a key module with four functional 
genes (PIM3, CHUK, F2RL1, and CA1) was identified. 
Based on the key regulons, we constructed a multimarker 
model by the SVM method, which had an AUC equal to 
1 to effectively predict HSCR. It has been reported that 
PIM3, a proto- oncogene with serine/threonine kinase 
activity, could regulate cell migration and apoptosis via 
PI3K–AKT, p38, or Rho GTPase signaling,56–58 and was 
related to demyelinating disease.59 Inhibitor-κB kinase 
α, which is encoded by the CHUK gene, was recognized 

to regulate NF-κB activity60 61 and involved the differ-
entiation of mouse embryonic neuroectoderm. F2RL1 
was reported as the key protease- activated receptor to 
stimulate neuronal repair after ischemic injury.62 63 The 
GO/KEGG annotations of carbonic anhydrase 1 (CA1) 
were carbonate dehydratase activity, hydrolyase activity 
and interleukin- 12 family signaling. At present, all the 
aforementioned genes were still unclear but relevant to 
neuropathies, especially HSCR.

As reported, the development and functional matu-
rity of ENS is regulated by complex mechanisms, which 
largely depend on the potential of ‘seed’ ENCCs and 
their compatibility with the intestinal microenviron-
ment ‘niche’.64 65 The genetic factors, such as gene 
mutations (including RET, EDNRB, RARB, GATA2, 
SOX10, PHOX2B, etc)2 65 and signaling pathway disor-
ders (including PI3K–Akt, MAPK, IKK/NF-κB, Rho/

Figure 7 Analysis of TF–miRNA–mRNA network. (A) The TF–miRNA–mRNA network. The miRNAs, mRNAs, and TFs are 
marked as diamonds, ellipses, and octagons, respectively; upregulated genes are marked in red, while the downregulated 
genes are marked in green; bigger nodes indicate the higher degree; red, gray, and green lines represent the validated, 
reported, and predicted connections, respectively. (B) Key modules of TF–miRNA–mRNA network identified by cytoHubba. The 
miRNAs, mRNAs, and TFs are marked as diamonds, ellipses, and octagons, respectively; sizes and colors of nodes represent 
the degree in the network. (C) Promoter region analysis of miRNA genes in UCSC genome browser (https://genome.ucsc.edu/). 
Higher level of H3K4me3 methylated modification represents the more reliable TF–target relationship. (D) Correlation analysis 
of TFs and miRNA- targeted mRNAs in the GRNdb (http://www.grndb.com/). GRNdb, Gene Regulatory Network Database; 
miRNA, microRNA; TF, transcription factor; UCSC, University of California Santa Cruz.
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ROCK, etc), determine the inborn developmental 
potential of ENCCs. Meanwhile, the critical role of 
intestinal microenvironment, such as glial cell line- 
derived neurotrophic factor, 5- hydroxytryptamine, 
semaphorins, neuregulin 1, the extracellular matrix 
molecules (collagen, laminin, proteoglycans, etc),65 
postnatal intestinal flora colonization, and their metab-
olites,66 has been gradually recognized. Although the 
functional annotation of the TRN regulons mentioned 
previously appeared to be associated with the signaling 
pathways in neurogenesis and neuroprotection, which 
suggests the significant roles in HSCR pathogenesis, 
how the TRN regulons regulate the ENCCs and interact 
with these intestinal microenvironment niche remain to 
be further investigated.

In conclusion, this study provided a potential TF–
miRNA–mRNA network based on integrated analysis of 
three microarray datasets. ROC analysis based on the 
SVM method revealed a strong diagnostic value of the key 
TRN regulons, which can help enrich the connotation of 
HSCR pathogenesis and diagnosis and provide new hori-
zons for further study. However, due to the limited data-
sets of HSCR, an integrated model containing miRNAs 
and mRNA to predict HSCR was unavailable. Moreover, 
further validated experiments with cells and animals 
were extensible.
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