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ABSTRACT
Background  Neuroblastoma is an extremely malignant 
tumor in children. For advanced or recurrent cases, 
existing treatment modalities are limited and efficacy 
remains disappointing. With the improvement in 
understanding of molecular biology of neuroblastoma and 
the development of clinical trials of targeted drug therapy, 
a variety of targeted therapies for neuroblastoma have 
appeared.
Data sources  All the recent literatures on targeted 
therapies of neuroblastoma on PubMed were searched and 
reviewed.
Results  This article reviewed targeted therapies of 
neuroblastoma going through clinical trials and obtained 
preliminary results. The features, advantages and 
disadvantages of targeted radiation therapy,
immunotherapy, gene and pathway molecular inhibitor and 
angiogenesis inhibitor were discussed.
Conclusion  This study provides references for better 
understanding the current progress of targeted therapies 
for neuroblastoma.

INTRODUCTION
Neuroblastoma is an extremely malignant 
and aggressive childhood tumor, which is 
prone to distant metastasis. Despite the 
improvement of multimodal treatment regi-
mens including induction chemotherapy 
and surgery, intensive consolidation chemo-
therapy, irradiation and autologous hemato-
poietic stem-cell rescue, the outcome for 
children with advanced or recurrent diseases 
has been improved only modestly. With the 
promotion of molecular biological research 
of neuroblastoma, a variety of targeted ther-
apies have been developed for clinical trials, 
providing promising intervention therapies 
for high-risk neuroblastoma, especially for 
relapsed/refractory disease. In this review, we 
presented the current status and prospects of 
targeted therapies for neuroblastoma going 
through clinical trials and obtained prelimi-
nary results.

The significance of targeted therapy for 
neuroblastoma
About half of children with neuroblastoma 
have distant metastasis at the time of diag-
nosis. Multimodality approaches including 

inducing chemotherapy and surgery, consol-
idation chemotherapy with autologous 
hematopoietic stem-cell rescue, radiation 
therapy and immunotherapy provide the 
standard-of-care treatment strategy for high-
risk neuroblastoma to date.1 More than 50% 
of patients diagnosed with high-risk neuro-
blastoma were either resistant to conven-
tional chemotherapies or relapsed after treat-
ment. Patients with recurrent or refractory 
neuroblastoma had particularly low survival 
rates according to an analysis of large registry-
based results.2 3 The 5-year overall survival 
(OS) postrelapse was 20%, and the 5-year 
OS was only 8% for patients in stage 4 with 
postrelapse in a report from the Interna-
tional Neuroblastoma Risk Group project.3 
In 35 phase I/II clinical trials (from August 
2002 to January 2014) for recurrent/refrac-
tory neuroblastoma conducted by Children’s 
Oncology Group (COG), the 4-year OS was 
reported to be 20%±2%.4 The analysis of 
these trials showed that most patients with 
high-risk neuroblastoma did not continue 
to receive other treatments that beyond 
inducing chemotherapy due to insufficient 
response to chemotherapy. For example, in 
a randomized phase III trial conducted by 
HR-NBL1/SIOPEN, 51.5% of the high-risk 
patients failed to continue beyond induction 
therapy.5 6 Therefore, the development of 
novel agents is imperative.

Recurrent neuroblastomas usually harbor 
heavy mutational burden but reduced 
subclonal heterogeneity compared with 
primary tumors at diagnosis. In a retrospec-
tive study of 138 patients whose tumors had 
been sequenced at diagnosis, second-look 
surgery and relapse revealed a substantial 
mutational evolution during treatment and 
progression. A variety of mutated genes are 
targetable and promising.7 Remarkably, 
anaplastic lymphoma kinase (ALK) was the 
most commonly mutated gene at diagnosis 
and gained a higher frequency of aberra-
tions in recurrent tumors. An enrichment 
of activating mutations in the RAS-MAPK 
pathway was also observed in tumors after 
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chemotherapy or at relapse.7 8 Therefore, targeted ther-
apies have become a promising approach to treating 
patients with neuroblastoma (especially relapsed and 
refractory cases) and to improving the prognosis.

With the intensive study of the etiology of neuro-
blastoma, more and more targeted drugs have been 
introduced. Several new drugs have been tested in clin-
ical trials or are currently being tested, which include 
targeted radiation therapy, targeted immunotherapy, 
gene and pathway molecular inhibitor and angiogen-
esis inhibitor. The following sections discuss these 
drugs in detail.

Approaches to targeted therapies for neuroblastoma
Targeted radiation therapy
Metaiodobenzylguanidine (MIBG) is a compound 
that can be combined with radioactive iodine (131I) 
to deliver targeted radiation therapy. It is an analog 
of norepinephrine and was first used as a radioactive 
tracer for imaging of the adrenal medulla. Tumors cells 
derived from sympathetic nervous system tissues, such 
as neuroblastoma, express the norepinephrine trans-
porter (encoded by SLC6A2 gene), which is thought 
to have high specificity and sensitivity to MIBG.9 MIBG 
labeled with 131I could make it radioactive, which 
could achieve the purpose of treatment by killing 
tumor cells.10 Several clinical trials have shown that the 
response rate to treatment can reach 37% by gradually 
increasing the frequency and cumulative dose of 131I-
MIBG in neuroblastoma, and the MIBG therapy also 
showed high effectiveness and good tolerance.11–13 
Now, 131I-MIBG is mainly applied to clinical treatment 
of high-risk, recurrent and refractory patients.

Targeted immunotherapy
Anti-GD2 antibodies
Disialoganglioside (GD2) is a b-series ganglioside and 
plays an essential role in embryonic development.14 GD2 
is highly expressed on the surface of neuroblastoma 
tumor cells, whereas its expression in normal tissues is 
limited. What is more, interfering with GD2 expression 
has a significant antitumor effect making this surface 
glycolipid antigen an ideal target for immunotherapy of 
neuroblastoma.15 There are currently three types of clini-
cally used GD2 antibodies: mouse monoclonal antibodies 
(mAb), human-mouse chimeric antibodies, and human-
ized antibody.

Active immunotherapy
Neuroblastoma cells can avoid the attack of T cells and 
natural killer (NK) cells by downregulating human 
leukocyte antigen and adhesion molecules. At the same 
time, its cell surface carries abundant gangliosides and 
sialic acid-containing sugars and proteins, making it 
even immunosuppressive.16 Therefore, it is of necessity 
to develop active immunotherapy of neuroblastoma, the 
most representative of which are anti-idiotype vaccine 
and bivalent ganglioside vaccine.

Adoptive T- cell therapy
Adoptive cell therapy refers to the therapy isolating a 
large number of tumor-specific lymphocytes (eg, T-lym-
phocytes) and re-injecting them into the patient after 
genetic modification and in vitro culture.16 The high-risk 
group neuroblastoma mainly focuses on chimeric antigen 
receptor (CAR)-T-cell therapy. Adoptive cell therapies 
aiming at high-risk neuroblastoma mainly concentrate on 
CAR-T-cell therapy. CAR consists of a single-chain variable 
fragment (anti-GD2), a transmembrane domain and an 
extracellular domain of an inner domain. CAR connects 
tumor cell surface antigens and provides co-stimulatory 
signals to T cells, enabling T cells to directly recognize 
and kill tumor cells beyond the major histocompatibility 
complex presentation mechanism.17

Gene and pathway molecular inhibitor
ALK inhibitors
ALK belongs to the insulin receptor protein-tyrosine 
kinase superfamily and is considered as an oncogene 
in human cancers. ALK aberrations in neuroblastoma 
include copy number variation (CNV), amplification 
and mutation. ALK copy number gain is approximately 
15%–25% of neuroblastoma, amplification is seen in 
4% of high-risk cases and mutation is found in 6%–10% 
of cases. The most common point mutations of ALK 
are R1275Q (43%), F1174L (30%) and F1245C (12%), 
which could induce autophosphorylation of the tyrosine 
kinase domain and abnormal activation of the ALK 
receptor.16 18 19 The results of preclinical studies confirmed 
that ALK was a promising therapeutic target, which 
had the following advantages and characteristics. First, 
ALK abnormalities can be inhibited by small-molecule 
blockers, which are easy to prepare and are convenient 
to apply. Second, abrogation of ALK was effective both in 
the wild-type and in the mutated neuroblastoma cells.20 
Third, ALK alterations are usually associated with MYCN 
amplification. ALK is a transcriptional target of MYCN, 
whereas ALK activates transcription of MYCN in neuro-
blastoma cell lines.21 Therefore, ALK inhibitors also have 
a therapeutic effect on neuroblastoma in the high-risk 
cases with MYCN amplification.

Targeting MYCN-dependent transcription and N-Myc protein 
stability
The transcription factor MYCN belongs to the MYC 
family, which is a crucial for regulating cell proliferation, 
cell growth, cell differentiation and survival in embry-
onic central nervous system cells. The amplification of 
the MYCN gene is the most common focal gene mutation 
in sporadic neuroblastoma, and it is also a strong indi-
cator of the poor prognosis. However, the MYCN gene is 
still difficult to serve as a direct therapeutic target. MYCN 
can be repressed by targeting the transcription process 
of MYCN as well as by reducing the stability of the N-Myc 
protein.16 For example, bromodomain and extra terminal 
(BET) inhibitor can inhibit BET family proteins, which 
are the transcription factors binding at the promoter 

 on A
pril 29, 2025 by guest. P

rotected by copyright.
http://w

jps.bm
j.com

/
W

orld Jnl P
ed S

urgery: first published as 10.1136/w
jps-2020-000164 on 2 July 2020. D

ow
nloaded from

 

http://wjps.bmj.com/


3Wang J, et al. World Jnl Ped Surgery 2020;3:e000164. doi:10.1136/wjps-2020-000164

Open access

of MYCN gene, and can suppress the transcription of 
MYCN.22 Small molecule inhibitor of Aurora-A kinase 
destroys Aurora-A kinase/N-Myc protein complex, main-
taining neuroblastoma cell proliferation, destabilizing 
N-Myc protein to mediate tumor regression.23

Pathway inhibitors
Aberrantly activated gene pathways are important drivers 
in the malignant progression of neuroblastoma. Aber-
rations of ALK also induce activation of multiple down-
stream signaling like phosphatidylinositol 3-kinase/
protein kinase B/mammalian target (PI3K/AKT/
mTOR) and Ras/mitogen-activated protein kinase (RAS-
MAPK) signal transduction pathways.24 PI3K/AKT/
mTOR pathway is a key intracellular signaling pathway 
for tumorigenesis, promoting cell growth, prolifera-
tion, metastasis, angiogenesis and glucose metabolism.25 
Abnormal activation of this pathway is common in high-
risk neuroblastoma.26 In recent years, several novel 
agents have been developed to inhibit the occurrence 
and progress of neuroblastoma by blocking different 
targets in the PI3K/AKT/mTOR pathway.

Angiogenesis inhibitor
Angiogenesis is a key process for the continuous growth 
and metastasis of neuroblastoma. To date, a large 
number of pro-angiogenic factors have been identified, 
whose complicated interaction induces angiogenesis in 
neuroblastoma, including vascular endothelial growth 
factor (VEGF), interleukin 8 (IL-8), fibroblast growth 
factor 2 (FGF-2), transforming growth factor-α, platelet-
derived growth factor A (PDGF-A), erythropoietin and 
angiopoietins.27 Expression of VEGF and VEGF receptor 
(VEGFR) was associated with high-risk and high-stage 
neuroblastoma, and these factors were sensitive targets 
to antiangiogenic therapy.28 29 Antiangiogenic agents 
include single-pathway inhibitors and multipathway 
inhibitors. For example, bevacizumab is a single-pathway 
antiangiogenic antibody against VEGF that inhibits the 
binding of VEGF to the receptors Flt-1 (VEGFR-1) and 
KDR (VEGFR-2).30 Ponatinib and imatinib are novel 
inhibitors for multiple tyrosine kinases involved in angi-
ogenesis including FGFR1–4, RET, PDGFR, c-KIT, FLT3, 
MEKK2 and the VEGFR 1 and 2.31

Advantages and disadvantages of currently applied targeted 
agents
Advantages of targeted therapies
High specificity
Due to focusing on a certain target of neuroblastoma 
tumor cells, drugs usually have higher specificity. 3F8 
was the earliest mouse mAb used to treat neuroblastoma, 
belonged to IgG3 and has a high affinity for GD2.32 Hu3F8 
is a humanized mAb of 3F8, which has longer retention 
on the GD2-positive cell surface. Besides, GD2 anti-
idiotype vaccine induced GD2-specific humoral immune 
response against gangliosides on the surface of neuroblas-
toma cells in mice and specifically killed neuroblastoma 

cells.33 Eleven of 13 children exhibited an IgM and/or 
IgG antibody response against NeuGcGM3 in the phase 
I trial of the anti-idiotype vaccine racotumomab. JQ1 is a 
BET inhibitor targeted BRD4 from the MYCN promoter, 
results in inhibition of MYCN transcription34 and leads to 
cell cycle arrest and apoptosis, which may be beneficial 
for patients with MYCN-amplified neuroblastoma.

Great antitumor activity
Various targeted drugs showed great antitumor activity. 
A retrospective analysis of 39 patients with recurrent or 
refractory neuroblastoma who were treated with 131I-
MIGB monotherapy demonstrated an objective response 
rate (ORR) of 46%.13 The human-murine chimeric anti-
GD2 antibody ch14.18 (dinutuximab) had the same 
complement-mediated cytotoxicity (CMC) potency and 
50-fold to 100-fold higher antibody-dependent cell-
mediated cytotoxicity (ADCC) compared with mouse 
mAb 14G2a.35 The humanized anti-GD2 mAb hu14.18 has 
enhanced ADCC and has reduced CMC compared with 
mouse mAb, with a great ORR of 61.5% when combining 
with chemotherapy, IL-2, granulocyte-macrophage 
colony-stimulating factor (GM-CSF) and infusion of NK 
cells.36 Phase I trial of third-generation CAR-T GD2-
CAR3 showed an increment of circulating IL-15 levels 
as an expansion of GD2-CAR3T cells was observed. The 
significant expansion of CD45/CD33/CD11b/CD163+ 
bone marrow cells in all children indicated that GD2-
CAR3 was effective in early antitumor responses.37

Improved prognosis
A variety of targeted drugs improved the prognosis of 
patients with high-risk neuroblastoma, especially in 
targeted immunotherapies. A comprehensive therapy 
including 131I-MIGB could improve the prognosis of 
refractory neuroblastoma, with a 3-year OS of 62%±8% 
in the new approaches to neuroblastoma therapy phase 
II study.38 Compared with retinoic acid (RA) alone, anti-
GD2 mAb ch14.18 combined with GM-CSF plus IL-2 
and RA significantly improved 2-year progression-free 
survival (PFS) (66%±5% vs 46±5%, p=0.01) and OS 
(86%±4% vs 75±5%, p=0.02).39 In the phase I trial of a 
bivalent gangliosides vaccine combined with immunolog-
ical adjuvant OPT-821 and β-glucan, the result showed 
astonishing antitumor activity with a 2-year event-free 
survival of 80%±10% and OS of 93%±6%.40 The combi-
nation of Aurora A kinase inhibitor MLN8237, irinotecan 
and temozolomide in phase I trial has shown the ORR of 
31.8% and the 2-year PFS of 52.4%.41 The phase II trial 
has demonstrated antitumor activity (1-year PFS 34%) 
of combination, particularly in children with MYCN 
non-amplified neuroblastoma.42 The AKT inhibitor 
perifosine showed a 3-year PFS rate of 36% in a phase I 
trial in patients with relapsed/refractory neuroblastoma, 
and 9 of 27 children without MYCN amplification had 
a median PFS of 54 months. Multikinase angiogenesis 
inhibitor imatinib revealed the complete remission (CR) 
rate of 21% at the time of the first report and 10-year OS 
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of 12.5% in prolonged phase II study, suggesting imatinib 
is efficient in some subjects with relapsed/refractory 
neuroblastoma.43

Less side effects
Targeted drugs usually have fewer side effects, which 
leads to better compliance and better clinical use. 
Hu14.18K322A is a humanized anti-GD2 mAb to 14G2a, 
which has a single point mutation (K322A) designed 
to prevent activation of the complement cascade, thus 
reducing complement-mediated pain and the possibility 
of allergic reaction.44 Dose-limiting grade 3 or 4 toxicities 
have included sensory neuropathy, serum sickness and 
posterior reversible encephalopathy syndrome. Grade 3 
or 4 pain has been observed in most patients.44 Compared 
with anti-GD2 mAbs, the regimen including the bivalent 
gangliosides vaccine had advantages of no neuropathic 
pain.40 The common side effects of MIBG were myelo-
suppression and diarrhea, which showed a good appli-
cation prospect.45 The ALK inhibitor crizotinib was well 
tolerated without evidence of cumulative toxic effects in 
its phase I consortium study of pediatric refractory solid 
tumors, with common side effects of mild nausea, mild 
vomiting and mild visual disturbances.46

Disadvantages of targeted therapies
Limited antitumor activity
Although anti-GD2 immunotherapies showed good cyto-
toxicity against neuroblastoma, several targeted drugs 
such as gene and pathway inhibitors showed limited 
antitumor activity in early phase clinical trials. COG 
developed a phase I trial of crizotinib in children with 
refractory neuroblastoma. In this trial, only 1 of 11 chil-
dren harboring ALK translocation had CR, 2 children 
remained SD and the remaining cases had progres-
sive disease.47 The phase II trials of mTOR inhibitor 
temsirolimus demonstrated that the 1-year PFS rate of 
patients with relapsed/refractory neuroblastoma was 
only 24.7% of temsirolimus plus irinotecan/temozolo-
mide, which was significantly lower than the efficacy of 
ch14.18 plus irinotecan/temozolomide with 1-year PFS 
rate of 76.5%. Moreover, the angiogenesis inhibitor beva-
cizumab combined with irinotecan and temozolomide 
did not improve the response rate of refractory neuro-
blastoma compared with irinotecan/temozolomide treat-
ment in phase II study.30

Drug resistance
The utility of some targeted drugs has been limited due 
to drug resistance and disease progression. ALK inhib-
itor is an example, and the early phase clinical trials of 
ALK inhibitor crizotinib showed high disease progres-
sion rate.47 48 Vitro studies revealed that cell lines of 
neuroblastoma harboring F1174 and F1245 mutated 
ALK increased ATP-binding affinity and reduced ability 
to competitively inhibit ATP, resulting in resistance.49 
Another study found that no additional mutations or 
CNV occurred in ALK, whereas the level of tyrosine 

kinase receptor activation altered, with significantly 
increased EGFR phosphorylation in crizotinib-resistant 
neuroblastoma cell line.50 Besides, the study showed that 
activation of receptor tyrosine kinases and PI3K signaling 
promoted drug resistance of BET inhibitor in neuroblas-
toma, informing efficacious synergistic therapies.51

Immunogenicity
Although several targeted immunotherapies have 
obtained good curative effects, they still have common 
shortcomings, one of which is immunogenicity. Previous 
studies have found the incidence of antidrug antibody 
was 70%–80% for human antimouse antibody (m3F8), 
19%–21% for human antichimeric antibody (ch14.18) and 
40% for human antihuman antibody (hu14.18K322A), 
which resulted in a faster elimination of antibodies from 
the body due to neutralizing antibodies and affected 
the half-life of antibodies in the body.52 Also, Surek and 
Ektomab are anti-GD2 trifunctional bispecific full-length 
antibodies, containing the Fab fragments to the GD2/
GD3-specific antibody ME361 and the T cell-specific CD3 
antigen, which recruit cytotoxic lymphocytes and target 
them towards GD2-positive tumors. Since they consist of 
mouse and rat original antibody fragments, the immuno-
genicity and specificity of them also limit the prospects of 
their utilization. In addition, ME361 antibodies display 
cross-reactivity to GD3, which may increase side effects by 
influencing healthy body tissues.53

Difficult to penetrate tumor tissue
Adoptive cell therapy for neuroblastoma faces multiple 
hurdles, and the first is the difficulty in penetrating the 
tumor to discharge their cytotoxic function. Unlike the 
high level of migrating efficacy of CAR-T cells against 
hematological malignancies, solid tumors including 
neuroblastoma secrete chemokines, such as CXCL12 
and CXCL5 which inhibit T-cell migration into the tumor 
regions.54 Besides, the abnormal vasculature hinders 
effective infiltration, and in the surrounding matrix and 
the physical barrier of tumors, immunosuppressive bone 
marrow cells can be attracted to the tumor microenvi-
ronment, thereby preventing T-cell infiltration.54 Solving 
these problems is a major challenge for CAR-T therapy.

CONCLUSION
In the past decade, a variety of clinical trials of novel 
targeted agents have been conducted. Targeted immu-
notherapy has played a prominent role in it. Anti-GD2 
chimeric mAb ch14.18 became the first drug approved 
by the US Food and Drug Administration (FDA) for 
first-line treatment of high-risk neuroblastoma in nearly 
30 years, which was a breakthrough in the treatment of 
neuroblastoma. The widespread administration of anti-
GD2 mAb has shown extraordinary antitumor efficacy, 
has greatly improved the survival rate of children with 
neuroblastoma and is presently the most promising drug 
in the treatment of neuroblastoma. The combination 
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of cytokines and anti-GD2 mAbs enhanced the synergy 
effect, leading to stronger cytotoxicity efficacy. The devel-
opment of CAR-T therapy in neuroblastoma is still in an 
early stage. The current barriers of CAR-T are mainly 
target selection, antibody site screening, optimization of 
CAR structure, and enhancement of the migrating effi-
cacy.

In addition, therapies targeting actionable mutations 
and abnormally activated signaling pathways are also a 
hot topic of current researches, due to the relatively high 
mutant frequency of recurrent neuroblastoma. Several 
novel agents and combinations of small molecular inhib-
itors have been tested preclinically and in early phase 
clinical trials. However, most results of clinical trials 
were disappointing, with limited antitumor activity and 
low rates of objective response. Moreover, it was usually 
unable to obtain tumor tissues at the time of relapse for 
acquiring information about mutations and abnormal 
pathways when children were enrolled in clinical trials. 
The ignorance of molecular pathways may restrict the 
efficacy of the drugs.

Despite a myriad of targets, the number of high-risk 
neuroblastomas for randomized clinical trials is limited. 
Early identification of patients with neuroblastoma at a 
very high risk of treatment failure has become a trend 
for early intervention by novel agents to avoid patients 
becoming refractory or relapsed cases.6 This requires a 
deeper understanding of the molecular biology of the 
relapsing process and resistant mechanism of neuroblas-
toma, and an early predictive model including molecular 
biomarkers.
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